218 research outputs found

    Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Get PDF
    BACKGROUND: Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. RESULTS: We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance). In particular, Cinteny provides: i) integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii) flexibility to adjust the parameters and re-compute the results on-the-fly; iii) ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at . CONCLUSION: Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances. Cinteny can also be used to interactively browse syntenic blocks conserved in multiple genomes, to facilitate genome annotation and validation of assemblies for newly sequenced genomes, and to construct and assess phylogenomic trees

    Screening and brief interventions for hazardous and harmful alcohol use in primary care: a cluster randomised controlled trial protocol

    Get PDF
    A large number of randomised controlled trials in health settings have consistently reported positive effects of brief intervention in terms of reductions in alcohol use. However,although alcohol misuse is common amongst offenders, there is limited evidence of alcohol brief interventions in the criminal justice field. This factorial pragmatic cluster randomised controlledtrial with Offender Managers (OMs) as the unit of randomisation will evaluate the effectiveness and cost-effectiveness of different models of screening to identify hazardous and harmful drinkers in probation and different intensities of brief intervention to reduce excessive drinking in probation clients. Ninety-six OMs from 9 probation areas across 3 English regions (the NorthEast Region (n = 4) and London and the South East Regions (n = 5)) will be recruited. OMs will berandomly allocated to one of three intervention conditions: a client information leaflet control condition (n = 32 OMs); 5-minute simple structured advice (n = 32 OMs) and 20-minute brieflifestyle counselling delivered by an Alcohol Health Worker (n = 32 OMs). Randomisation will be stratified by probation area. To test the relative effectiveness of different screening methods all OMs will be randomised to either the Modified Single Item Screening Questionnaire (M-SASQ) orthe Fast Alcohol Screening Test (FAST). There will be a minimum of 480 clients recruited into the trial. There will be an intention to treat analysis of study outcomes at 6 and 12 months postintervention. Analysis will include client measures (screening result, weekly alcohol consumption,alcohol-related problems, re-offending, public service use and quality of life) and implementation measures from OMs (the extent of screening and brief intervention beyond the minimum recruitment threshold will provide data on acceptability and feasibility of different models of brief intervention). We will also examine the practitioner and organisational factors associated with successful implementation.The trial will evaluate the impact of screening and brief alcohol intervention in routine probation work and therefore its findings will be highly relevant to probation teams and thus the criminal justice system in the UK

    Fast estimation of the difference between two PAM/JTT evolutionary distances in triplets of homologous sequences

    Get PDF
    BACKGROUND: The estimation of the difference between two evolutionary distances within a triplet of homologs is a common operation that is used for example to determine which of two sequences is closer to a third one. The most accurate method is currently maximum likelihood over the entire triplet. However, this approach is relatively time consuming. RESULTS: We show that an alternative estimator, based on pairwise estimates and therefore much faster to compute, has almost the same statistical power as the maximum likelihood estimator. We also provide a numerical approximation for its variance, which could otherwise only be estimated through an expensive re-sampling approach such as bootstrapping. An extensive simulation demonstrates that the approximation delivers precise confidence intervals. To illustrate the possible applications of these results, we show how they improve the detection of asymmetric evolution, and the identification of the closest relative to a given sequence in a group of homologs. CONCLUSION: The results presented in this paper constitute a basis for large-scale protein cross-comparisons of pairwise evolutionary distances

    MultiMSOAR 2.0: An Accurate Tool to Identify Ortholog Groups among Multiple Genomes

    Get PDF
    The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about gene births, duplications and losses in evolution, which may be of independent biological interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for free

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes

    Get PDF
    Orthology detection is critically important for accurate functional annotation, and has been widely used to facilitate studies on comparative and evolutionary genomics. Although various methods are now available, there has been no comprehensive analysis of performance, due to the lack of a genomic-scale β€˜gold standard’ orthology dataset. Even in the absence of such datasets, the comparison of results from alternative methodologies contains useful information, as agreement enhances confidence and disagreement indicates possible errors. Latent Class Analysis (LCA) is a statistical technique that can exploit this information to reasonably infer sensitivities and specificities, and is applied here to evaluate the performance of various orthology detection methods on a eukaryotic dataset. Overall, we observe a trade-off between sensitivity and specificity in orthology detection, with BLAST-based methods characterized by high sensitivity, and tree-based methods by high specificity.Β Two algorithms exhibit the best overall balance, with both sensitivity and specificity>80%: INPARANOID identifies orthologs across two species while OrthoMCL clusters orthologs from multiple species. Among methods that permit clustering of ortholog groups spanning multiple genomes, the (automated) OrthoMCL algorithm exhibits better within-group consistency with respect to protein function and domain architecture than the (manually curated) KOG database, and the homolog clustering algorithm TribeMCL as well. By way of using LCA, we are also able to comprehensively assess similarities and statistical dependence between various strategies, and evaluate the effects of parameter settings on performance. In summary, we present a comprehensive evaluation of orthology detection on a divergent set of eukaryotic genomes, thus providing insights and guides for method selection, tuning and development for different applications. Many biological questions have been addressed by multiple tests yielding binary (yes/no) outcomes but no clear definition of truth, making LCA an attractive approach for computational biology

    ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).</p> <p>Results</p> <p>We found that a variant of ASB9 that lacks the SOCS box (ASB9Ξ”SOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9Ξ”SOCS, induces ubiquitination of uMtCK. ASB9 and ASB9Ξ”SOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9Ξ”SOCS.</p> <p>Conclusions</p> <p>ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9Ξ”SOCS may be a key factor in the growth of human cell lines and primary cells.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore